Home
Published on Texas Gateway (https://texasgateway.org)
i

Website Maintenance Notice

We’re currently performing scheduled maintenance to update and improve our site. Some content may be temporarily unavailable as we retire legacy materials that no longer meet current standards. Thank you for your patience as we work to enhance your experience.
Key Equations
resultant magnitude R= R x 2 + R y 2 R= R x 2 + R y 2
resultant direction θ= tan −1 ( R y / R x ) θ= tan −1 ( R y / R x )
x-component of a vector A (when an angle is given relative to the horizontal) A x =Acosθ A x =Acosθ
y-component of a vector A (when an angle is given relative to the horizontal) A y =Asinθ A y =Asinθ
addition of vectors A x  +  A y  = A A x  +  A y  = A
angle of displacement θ= tan −1 (y/x) θ= tan −1 (y/x)
velocity v= v x 2 + v y 2 v= v x 2 + v y 2
angle of velocity θ v = tan −1 ( v y / v x ) θ v = tan −1 ( v y / v x )
maximum height h= v 0y 2 2g h= v 0y 2 2g
range R= v 0 2 sin2 θ 0 g R= v 0 2 sin2 θ 0 g
force of static friction f s ≤ μ s N f s ≤ μ s N
force of kinetic friction f k = μ k N f k = μ k N
perpendicular component of weight on an inclined plane w ⊥ =w cos(θ)=mg cos(θ) w ⊥ =w cos(θ)=mg cos(θ)
parallel component of weight on an inclined plane w || =w sin(θ)=mg sin(θ) w || =w sin(θ)=mg sin(θ)
Hooke’s law F=−kx F=−kx
period in simple harmonic motion T=2π m k T=2π m k
frequency in simple harmonic motion f= 1 2π k m f= 1 2π k m
period of a simple pendulum T=2π L g T=2π L g