###
Using Logical Reasoning to Prove Conjectures about Circles

Given conjectures about circles, the student will use deductive reasoning and counterexamples to prove or disprove the conjectures.

###
Creating Nets for Three-Dimensional Figures

Given nets for three-dimensional figures, the student will apply the formulas for the total and lateral surface area of three-dimensional figures to solve problems using appropriate units of measure.

###
Generalizing Geometric Properties of Ratios in Similar Figures

Students will investigate patterns to make conjectures about geometric relationships and apply the definition of similarity, in terms of a dilation, to identify similar figures and their proportional sides and congruent corresponding angles.

###
Determining Area: Sectors of Circles

Students will use proportional reasoning to develop formulas to determine the area of sectors of circles. Students will then solve problems involving the area of sectors of circles.

###
Converting Between Measurement Systems

Given a real-world situation with measurements in either metric/SI or customary units, the student will solve a problem requiring them to convert from one system to the other.

###
Making Conjectures About Circles and Segments

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties and relationships among the resulting segments.

###
Determining Area: Regular Polygons and Circles

The student will apply the formula for the area of regular polygons to solve problems.

###
Making Conjectures About Circles and Angles

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties of and relationships among the resulting angles.

###
Solving Problems With Similar Figures

Given problem situations involving similar figures, the student will use ratios to solve the problems.

###
Finding the Probabilities of Dependent and Independent Events

Given problem situations, the student will find the probability of the dependent and independent events.

###
Recognizing Misuses of Graphical or Numerical Information

Given a problem situation, the student will analyze data presented in graphical or tabular form by evaluating the predictions and conclusions based on the information given.

###
Evaluating Methods of Sampling from a Set of Data

Given a problem situation, the student will evaluate a method of sampling to determine the validity of an inference made from the set of data.

###
Using Multiplication by a Constant Factor

Given problems involving proportional relationships, the student will use multiplication by a constant factor to solve the problems.

###
Predicting, Finding, and Justifying Data from a Table

Given data in table form, the student will use the data table to interpret solutions to problems.

###
Predicting, Finding, and Justifying Data from Verbal Descriptions

Given data in a verbal description, the student will use equations and tables to solve and interpret solutions to problems.

###
Connecting Postulates, Definitions, and Theorems

The student will distinguish the difference between undefined terms, definitions, postulates, conjectures, and theorems.

###
Determining the Validity of Conditional Statements

Given a conditional statement, the student will determine its validity and the validity of the converse, inverse and contrapositive.

###
Making and Verifying Conjectures about Angles

Given the relationship(s) among a set of angles, the student investigates the patterns and makes conjectures about the geometric relationships, including angles formed by parallel lines cut by a transversal.

###
Making and Verifying Conjectures about Lines

Students will investigate patterns and make conjectures about geometric relationships.

###
Making and Verifying Conjectures About Circles

Given information about the relationship(s) witnin one circle or a set of circles, the student will explore special segments and angles of circles.