Pagination
-
Previous page
-
1 of 6
- Next page
Using Linear Equations to Count Pecans
Students will write linear equations in point-slope form given two points via a verbal description.
45-45-90 Triangles
To learn the pattern of the side lengths of a 45-45-90 triangle, students complete a gallery walk, a card sort activity starting with using the Pythagorean theorem, and activity to locate if there is an error in a presented problem and if so to identify what the error is.
Working with Literal Equations
The lesson will provide a conceptual basis for illustrating the parallelism between solving multi-step equations and translating literal equations into solutions for specified variables.
Product and Quotient Properties of Exponents
This lesson helps students understand two foundational exponential properties: The Product and Quotient Properties of Exponents. Students will collaborate to formulate a rule for these properties. Ultimately, students should conclude that when the same bases are being multiplied, exponents will be added; and when the same bases are being divided, exponents will be subtracted. As the lesson progresses, students will apply these rules to simplify expressions of various difficulties.
Kid2Kid: Determining the Meaning of Slope and Intercepts

Kid2Kid videos on determining the meaning of slope and intercepts in English and Spanish
Newton's Three Laws of Motion

This resource provides alternate or additional learning opportunities for students learning the three Newton's Laws of Motion. It includes a collection of interactive materilas, videos, and other digital media. Physics TEKS, (4)(D)
Light: Reflection and Refraction

This is a tier I instructional resource to provide a scaffolded learning experience for TEKS (5)(6)(C).
Drawing Conclusions about Three-Dimensional Figures from Nets

Given a net for a three-dimensional figure, the student will make conjectures and draw conclusions about the three-dimensional figure formed by the given net.
Newton's Law of Inertia

This resource provides instructional resources for Newton's First Law, the law of inertia.
Newton's Law of Action-Reaction

This resource is to support TEKS (8)(6)(C), specifically the Newton's third law or the law of action-reaction.
Writing Verbal Descriptions of Functional Relationships

Given a problem situation containing a functional relationship, the student will verbally describe the functional relationship that exists.
Writing Inequalities to Describe Relationships (Graph → Symbolic)

Given the graph of an inequality, students will write the symbolic representation of the inequality.
Writing Inequalities to Describe Relationships (Symbolic → Graph)

Describe functional relationships for given problem situations, and write equations or inequalities to answer questions arising from the situations.
Connecting Multiple Representations of Functions

The student will consider multiple representations of linear functions, including tables, mapping diagrams, graphs, and verbal descriptions.
Writing the Symbolic Representation of a Function (Graph → Symbolic)

Given the graph of a linear or quadratic function, the student will write the symbolic representation of the function.
Determining Parent Functions (Verbal/Graph)

Given a graph or verbal description of a function, the student will determine the parent function.
Determining Reasonable Domains and Ranges (Verbal/Graph)

Given a graph and/or verbal description of a situation (both continuous and discrete), the student will identify mathematical domains and ranges and determine reasonable domain and range values for the given situations.
Interpreting Graphs

Given a graph, the student will analyze, interpret, and communcate the mathematical relationship represented and its characteristics.
Interpreting Scatterplots

Given scatterplots that represent problem situations, the student will determine if the data has strong vs weak correlation as well as positive, negative, or no correlation.
Making Predictions and Critical Judgments (Table/Verbal)

Given verbal descriptions and tables that represent problem situations, the student will make predictions for real-world problems.