###
Newton's Three Laws of Motion

This resource provides alternate or additional learning opportunities for students learning the three Newton's Laws of Motion. It includes a collection of interactive materilas, videos, and other digital media. Physics TEKS, (4)(D)

###
Newton's Law of Inertia

This resource provides instructional resources for Newton's First Law, the law of inertia.

###
Newton's Law of Action-Reaction

This resource is to support TEKS (8)(6)(C), specifically the Newton's third law or the law of action-reaction.

###
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.

###
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.

###
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.

###
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.

###
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.

###
Developing the Concept of Slope

Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.

###
Generating Different Representations of Relationships

Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.

###
Predicting, Finding, and Justifying Data from a Graph

Given data in the form of a graph, the student will use the graph to interpret solutions to problems.

###
Electromagnetic Forces

Given schematic diagrams, illustrations or descriptions, students will identify the relationship of electric and magnetic fields in applications such as generators, motors, and transformers.

###
Power

Given diagrams, illustrations, scenarios, or relevant data, students will calculate the power of a physical system.

###
Kinetic and Potential Energy

Given diagrams, illustrations or relevant data, students will identify examples of kinetic and potential energy and their transformations.

###
Work-Energy Theorem

Using diagrams, illustrations, and relevant data, students will calculate the net work done on an object, the change in an object's velocity, and the change in an object's kinetic energy.

###
Graphing Proportional Relationships

Given a proportional relationship, students will be able to graph a set of data from the relationship and interpret the unit rate as the slope of the line.

###
Mean Absolute Deviation

Given a set of data with no more than 10 data points, students will be able to determine and use the mean absolute deviation to describe the spread of the data.

###
Evaluating Solutions for Reasonableness

Given problem situations, the student will determine if the solutions are reasonable.

###
Predicting, Finding, and Justifying Solutions to Problems

Given application problems, the student will use appropriate tables, graphs, and algebraic equations to find and justify solutions to problems.

###
3.01 Distance and Displacement

In this video, we explore the difference between distance traveled (an example of a scalar) and displacement (an example of a vector), and we review some basic vector math.