###
Proving an Ecosystem’s Health Through Succession

**Students engage in viewing day three of ecosystem changes in lab groups to determine if the ecosystem is healthy or unhealthy based on scientific data and factors. **

###
Mendelian Genetics Using Monohybrids

Students will work collaboratively through a fictitious, real-world scenario to determine the probability of each breeding pair of dogs producing offspring with the desired trait for a fictitious client.

###
Demonstration and Analysis of Dihybrid Crosses

The students will review related vocabulary, watch the teacher model a dihybrid cross, and then perform a dihybrid cross and answer questions about the outcomes with a partner.

###
Producing Plump Produce

In collaborative groups, the students investigate the transport of water within potato cells placed in various tonicity solutions.

###
Plant, Parts, and Function

Students use prior knowledge of body systems as they make connections to systems in plants. Students learn that some plant systems have similar functions as the respective animal systems. The lesson highlights the following systems in plants: root system, shoot system, vascular system, and reproductive system.

###
Energy Transfer in an Ecosystem

All matter contains energy. Energy can be transferred from one object to another. Energy transformation can occur through the conversion of energy from one form to another. Energy is never created nor destroyed; it is always transferred and/or transformed. Students will demonstrate how energy is transformed and transferred in an ecosystem. To do this, students will create energy pyramids by stacking cups that represent organisms and available amounts of energy. Students will graph and analyze the data.

###
TEA AP^{®} Physics 2: Algebra-Based

^{®}Physics 2: Algebra-Based

*AP ^{®} Physics* is the result of an effort to better serve teachers and students. The textbook focuses on the College Board’s AP® framework concepts and practices.

The AP^{®} Physics curriculum framework outlines the two full-year physics courses AP^{®} Physics 1: Algebra-Based and AP^{®} Physics 2: Algebra-Based. These two courses focus on the big ideas typically included in the first and second semesters of an algebra-based, introductory college-level physics course. They provide students with the essential knowledge and skills required to support future advanced coursework in physics. The AP^{®} Physics 1 curriculum includes mechanics, mechanical waves, sound, and electrostatics. The AP^{®} Physics 2 curriculum focuses on thermodynamics, fluid statics, dynamics, electromagnetism, geometric and physical optics, quantum physics, atomic physics, and nuclear physics. AP^{®} Science Practices emphasize inquiry-based learning and development of critical thinking and reasoning skills. Inquiry-based learning involves exploratory learning as a way to gain new knowledge. Students begin by making an observation regarding a given physics topic. Students then explore that topic using scientific methodology, as opposed to simply being told about it in lecture. In this way, students learn the content through self-discovery rather than memorization.

The AP^{®} framework has identified seven major science practices, which are described using short phrases that include using representations and models to communicate information and solve problems, using mathematics appropriately, engaging in questioning, planning and implementing data collection strategies, analyzing and evaluating data, justifying scientific explanations, and connecting concepts. The AP^{®} framework’s Learning Objectives merge content with one or more of the seven science practices that students should develop as they prepare for the AP^{®} Physics exam. Each chapter of AP^{®} Physics begins with a “Connection for AP^{®} Courses” that explains how the content in the chapter sections align to the Big Ideas, Enduring Understandings, Essential Knowledge, and Learning Objectives of the AP^{®} framework. These sections help students quickly and easily locate where components of the AP^{®} framework are covered in the book, as well as clearly indicate material that, although interesting, exceeds the scope of the AP^{®} framework. Content requirements for AP^{®} Physics are prescribed in the College Board Publication Advanced Placement Course Description: Physics, published by The College Board (http://ritter.tea.state.tx.us/rules/tac/chapter112/ch112d.html#112.64) and (http://ritter.tea.state.tx.us/rules/tac/chapter112/ch112d.html#112.65).

This open-education-resource instructional material by TEA is licensed under a Creative Commons Attribution 4.0 International Public License in accordance with Chapter 31 of the Texas Education Code.

###
What’s the Verdict? An Investigation of Herbicide Drift on Grapevines

Students will investigate the possible effects of herbicide drift on grape production by making inferences from an article about a local vineyard and using various experimental materials.

###
Square Root Regression

This lesson is a student discovery lesson that culminates in square root regression with technology. Students will use their study of inverses, the relationship between quadratic and square root functions, their previous knowledge of regression, and determine how to find the square root regression of real-world data.