Working with Literal Equations
The lesson will provide a conceptual basis for illustrating the parallelism between solving multi-step equations and translating literal equations into solutions for specified variables.
Mendelian Genetics Using Monohybrids
Students will work collaboratively through a fictitious, real-world scenario to determine the probability of each breeding pair of dogs producing offspring with the desired trait for a fictitious client.
Product and Quotient Properties of Exponents
This lesson helps students understand two foundational exponential properties: The Product and Quotient Properties of Exponents. Students will collaborate to formulate a rule for these properties. Ultimately, students should conclude that when the same bases are being multiplied, exponents will be added; and when the same bases are being divided, exponents will be subtracted. As the lesson progresses, students will apply these rules to simplify expressions of various difficulties.
Proving an Ecosystem’s Health Through Succession
Students engage in viewing day three of ecosystem changes in lab groups to determine if the ecosystem is healthy or unhealthy based on scientific data and factors.
Demonstration and Analysis of Dihybrid Crosses
The students will review related vocabulary, watch the teacher model a dihybrid cross, and then perform a dihybrid cross and answer questions about the outcomes with a partner.
6 OnTRACK Algebra I: Properties and Attributes of Functions

Students will learn how to use the properties and attributes of functions.
Producing Plump Produce
In collaborative groups, the students investigate the transport of water within potato cells placed in various tonicity solutions.
Energy Transfer in an Ecosystem
All matter contains energy. Energy can be transferred from one object to another. Energy transformation can occur through the conversion of energy from one form to another. Energy is never created nor destroyed; it is always transferred and/or transformed. Students will demonstrate how energy is transformed and transferred in an ecosystem. To do this, students will create energy pyramids by stacking cups that represent organisms and available amounts of energy. Students will graph and analyze the data.
Plant, Parts, and Function
Students use prior knowledge of body systems as they make connections to systems in plants. Students learn that some plant systems have similar functions as the respective animal systems. The lesson highlights the following systems in plants: root system, shoot system, vascular system, and reproductive system.
Equipment for Biology

Given investigation scenarios, students will determine the equipment that best fits the procedure.
Disruptions of the Cell Cycle: Cancer

Given illustrations or descriptions, students will identify disruptions of the cell cycle that lead to diseases such as cancer.
Mechanisms of Genetics: DNA Changes

Given illustrations or partial DNA sequences, students will identify changes in DNA and the significance of these changes.
Solving Quadratic Equations Using Algebraic Methods

Given a quadratic equation, the student will solve the equation by factoring, completing the square, or by using the quadratic formula.
Quadratics: Connecting Roots, Zeros, and x-Intercepts

Given a quadratic equation, the student will make connections among the solutions (roots) of the quadratic equation, the zeros of their related functions, and the horizontal intercepts (x-intercepts) of the graph of the function.
Using the Laws of Exponents to Solve Problems

Given problem situations involving exponents, the student will use the laws of exponents to solve the problems.
Formulating Systems of Equations (Verbal → Symbolic)

Given verbal descriptions of situations involving systems of linear equations the student will analyze the situations and formulate systems of equations in two unknowns to solve problems.
Solving Quadratic Equations Using Graphs

Given a quadratic equation, the student will use graphical methods to solve the equation.
Determining the Meaning of Intercepts

Given algebraic, tabular, and graphical representations of linear functions, the student will determine the intercepts of the function and interpret the meaning of intercepts within the context of the situation.
Predicting the Effects of Changing y-Intercepts in Problem Situations

Given verbal, symbolic, numerical, or graphical representations of problem situations, the student will interpret and predict the effects of changing the y-intercept in the context of the situations.
Solving Linear Inequalities

The student will represent linear inequalities using equations, tables, and graphs. The student will solve linear inequalities using graphs or properties of equality, and determine whether or not a given point is a solution to a linear inequality.