###
Motion in One Dimension

Given descriptions, illustrations, graphs, charts, or equations, students will analyze motion in one dimension.

###
Analyzing Two-Dimensional Motion

Given descriptions, illustrations, graphs, charts, or equations, students will analyze motion in two dimensions, including projectile and circular motion.

###
Electric and Magnetic Forces

Given diagrams, illustrations, or descriptions, students will identify examples of electric and magnetic forces.

###
Types of Motion

Students will distinguish between and/or interpret the types of motion.

###
Using Theoretical and Experimental Probability to Make Predictions

Given an event to simulate, the student will use theoretical probabilities and experimental results to make predictions and decisions.

###
Using Multiplication by a Constant Factor

Given problems involving proportional relationships, the student will use multiplication by a constant factor to solve the problems.

###
Predicting, Finding, and Justifying Data from a Table

Given data in table form, the student will use the data table to interpret solutions to problems.

###
Predicting, Finding, and Justifying Data from Verbal Descriptions

Given data in a verbal description, the student will use equations and tables to solve and interpret solutions to problems.

###
Disruptions of the Cell Cycle: Cancer

Given illustrations or descriptions, students will identify disruptions of the cell cycle that lead to diseases such as cancer.

###
Virus: Structure

Given illustrations, students will distinguish between viral structure and cellular structure.

###
Virus: Reproduction

Given descriptions and illustrations students will identify and describe the methods of viral reproduction.

###
Virus: Disease

Given scenarios, illustrations, or descriptions, students will identify major diseases caused by viruses, how viruses cause these diseases, and how the body responds to infection.

###
Taxonomy Standards

Given examples, students will recognize the importance of taxonomy to the scientific community.

###
Taxonomy: Major Groups

Given illustrations or descriptions, students will determine the classification of organisms into domains and kingdoms.

###
Enzymes

Given illustrations or scenarios, the student will identify an enzyme and the outcome of its action.

###
Animal System Interactions

Given illustrations, descriptions, or scenarios, students will describe the interactions that occur among systems in humans.

###
Mechanisms of Genetics: Protein Synthesis

Given illustrations or partial DNA or mRNA sequences, students will identify the processes and purposes of transcription and translation.

###
Abiotic Cycles

Given scenarios, illustrations, or descriptions, the student will describe the flow of matter through carbon and nitrogen cycles and describe the consequences of disrupting these cycles.

###
Homeostasis: Ecological Systems

Given images, videos, or scenarios, identify and describe the responses of organisms, populations, and communities to various changes in their external environment.

###
Biological Systems: System Organization

Given illustrations or descriptions, students will relate the levels of organization to each other and to the whole system.