Learning Objectives

Learning Objectives

By the end of this section, you will be able to do the following:

  • Discuss the Rayleigh criterion

The information presented in this section supports the following AP® learning objectives and science practices:

  • 6.C.2.1 The student is able to make claims about the diffraction pattern produced when a wave passes through a small opening and to qualitatively apply the wave model to quantities that describe the generation of a diffraction pattern when a wave passes through an opening whose dimensions are comparable to the wavelength of the wave.

Light diffracts as it moves through space, bending around obstacles, interfering constructively and destructively. While this can be used as a spectroscopic tool—a diffraction grating disperses light according to wavelength, for example, and is used to produce spectra—diffraction also limits the detail we can obtain in images. Figure 10.25(a) shows the effect of passing light through a small circular aperture. Instead of a bright spot with sharp edges, a spot with a fuzzy edge surrounded by circles of light is obtained. This pattern is caused by diffraction similar to that produced by a single slit. Light from different parts of the circular aperture interferes constructively and destructively. The effect is most noticeable when the aperture is small, but the effect is there for large apertures, too.

Part a of the figure shows a single circular spot of bright light; the light is dimmer around the edges. Part b of the figure shows two circles of light barely overlapping, forming a figure eight; the dimmer light surrounds the outer edges of the figure eight, but is slightly brighter where the two circles intersect. Part c of the figure shows two circles of light almost completely overlapping; again the dimmer light surrounds the edges but is slightly brighter where the two circles intersect.
Figure 10.25 (a) Monochromatic light passed through a small circular aperture produces this diffraction pattern. (b) Two point light sources that are close to one another produce overlapping images because of diffraction. (c) If they are closer together, they cannot be resolved or distinguished.

How does diffraction affect the detail that can be observed when light passes through an aperture? Figure 10.25(b) shows the diffraction pattern produced by two point light sources that are close to one another. The pattern is similar to that for a single point source, and it is just barely possible to tell that there are two light sources rather than one. If they were closer together, as in Figure 10.25(c), we could not distinguish them, thus limiting the detail or resolution we can obtain. This limit is an inescapable consequence of the wave nature of light.

There are many situations in which diffraction limits the resolution. The acuity of our vision is limited because light passes through the pupil, the circular aperture of our eye. Be aware that the diffraction-like spreading of light is due to the limited diameter of a light beam, not the interaction with an aperture. Thus, light passing through a lens with a diameter DD size 12{D} {} shows this effect and spreads, blurring the image, just as light passing through an aperture of diameter DD size 12{D} {} does. So diffraction limits the resolution of any system having a lens or mirror. Telescopes are also limited by diffraction, because of the finite diameter DD size 12{D} {} of their primary mirror.

Take-Home Experiment: Resolution of the Eye

Draw two lines on a white sheet of paper—several mm apart. How far away can you be and still distinguish the two lines? What does this tell you about the size of the eye’s pupil? Can you be quantitative? The size of an adult’s pupil is discussed in Physics of the Eye.

Just what is the limit? To answer that question, consider the diffraction pattern for a circular aperture, which has a central maximum that is wider and brighter than the maxima surrounding it, similar to a slit [see Figure 10.26(a)]. It can be shown that, for a circular aperture of diameter D,D, size 12{D} {} the first minimum in the diffraction pattern occurs at θ=1.22λ/Dθ=1.22λ/D size 12{θ=1 "." "22"λ/D} {}providing the aperture is large compared with the wavelength of light, which is the case for most optical instruments. The accepted criterion for determining the diffraction limit to resolution based on this angle was developed by Lord Rayleigh in the nineteenth century. The Rayleigh criterion for the diffraction limit to resolution states that two images are just resolvable when the center of the diffraction pattern of one is directly over the first minimum of the diffraction pattern of the other (see Figure 10.26(b)). The first minimum is at an angle of θ=1.22λ/D,θ=1.22λ/D, size 12{θ=1 "." "22"λ/D} {} so that two point objects are just resolvable if they are separated by the angle

10.27 θ=1.22λD,θ=1.22λD, size 12{θ=1 "." "22" { {λ} over {D} } } {}

where λλ size 12{λ} {} is the wavelength of light or other electromagnetic radiation and DD size 12{D} {} is the diameter of the aperture, lens, mirror, etc., with which the two objects are observed. In this expression, θθ size 12{θ} {} has units of radians.

Part a of the figure shows a graph of intensity versus theta. The curve has a central maximum at theta equals zero and its first minima occur at plus one point two two lambda over D and minus one point two two lambda over D. Farther from the central peak, several small peaks occur, but they are much much smaller than the central maximum. Part b of the figure shows a drawing in which two light bulbs, labeled object one and object two, appear in the foreground positioned next to each other. Two rays of ligh
Figure 10.26 (a) Graph of intensity of the diffraction pattern for a circular aperture. Note that, similar to a single slit, the central maximum is wider and brighter than those to the sides. (b) Two point objects produce overlapping diffraction patterns. Shown here is the Rayleigh criterion for being just resolvable. The central maximum of one pattern lies on the first minimum of the other.

Connections: Limits to Knowledge

All attempts to observe the size and shape of objects are limited by the wavelength of the probe. Even the small wavelength of light prohibits exact precision. When extremely small wavelength probes as with an electron microscope are used, the system is disturbed, still limiting our knowledge, much as making an electrical measurement alters a circuit. Heisenberg’s uncertainty principle asserts that this limit is fundamental and inescapable, as we shall see in quantum mechanics.

Example 10.5 Calculating Diffraction Limits of the Hubble Space Telescope

The primary mirror of the orbiting Hubble Space Telescope has a diameter of 2.40 m. Being in orbit, this telescope avoids the degrading effects of atmospheric distortion on its resolution. (a) What is the angle between two just-resolvable point light sources—perhaps two stars? Assume an average light wavelength of 550 nm. (b) If these two stars are at the 2 million light year distance of the Andromeda galaxy, how close together can they be and still be resolved? A light year, or ly, is the distance light travels in 1 year.

Strategy

The Rayleigh criterion stated in the equation θ=1.22λDθ=1.22λD size 12{θ=1 "." "22" { {λ} over {D} } } {} gives the smallest possible angle θθ size 12{θ} {} between point sources, or the best obtainable resolution. Once this angle is found, the distance between stars can be calculated, since we are given how far away they are.

Solution for (a)

The Rayleigh criterion for the minimum resolvable angle is

10.28 θ=1.22λD.θ=1.22λD. size 12{θ=1 "." "22" { {λ} over {D} } } {}

Entering known values gives

10.29 θ=1.22550×109m2.40 m= 2.80×107rad.θ=1.22550×109m2.40 m= 2.80×107rad.

Solution for (b)

The distance ss size 12{s} {} between two objects a distance rr size 12{r} {} away and separated by an angle θθ size 12{θ} {} is s=.s=. size 12{s=rθ} {}

Substituting known values gives

10.30 s=(2.0×106ly)(2.80×10−7rad)=0.56 ly.s=(2.0×106ly)(2.80×10−7rad)=0.56 ly.

Discussion

The angle found in part (a) is extraordinarily small—less than 1/50,000 of a degree—because the primary mirror is so large compared with the wavelength of light. As noticed, diffraction effects are most noticeable when light interacts with objects having sizes on the order of the wavelength of light. However, the effect is still there, and there is a diffraction limit to what is observable. The actual resolution of the Hubble Telescope is not quite as good as that found here. As with all instruments, there are other effects, such as nonuniformities in mirrors or aberrations in lenses that further limit resolution. However, Figure 10.27 gives an indication of the extent of the detail observable with the Hubble because of its size and quality and especially because it is above Earth’s atmosphere.

Two pictures of the same galaxy taken by different telescopes are shown side by side. Photo a was taken with a ground-based telescope. It is quite blurry and black and white. Photo b was taken with the Hubble Space Telescope. It shows much more detail, including what looks like a gas cloud in front of the galaxy, and is in color.
Figure 10.27 These two photographs of the M82 galaxy give an idea of the observable detail using the Hubble Space Telescope compared with that using a ground-based telescope. (a) On the left is a ground-based image. (Ricnun, Wikimedia Commons) (b) The photo on the right was captured by Hubble. (NASA, ESA, and the Hubble Heritage Team (STScI/AURA))

The answer in part (b) indicates that two stars separated by about half a light year can be resolved. The average distance between stars in a galaxy is on the order of 5 light years in the outer parts and about 1 light year near the galactic center. Therefore, the Hubble can resolve most of the individual stars in Andromeda galaxy, even though it lies at such a huge distance that its light takes 2 million years for its light to reach us. Figure 10.28 shows another mirror used to observe radio waves from outer space.

The figure shows a photograph from above looking into the Arecibo Telescope in Puerto Rico. It is a huge bowl-shaped structure lined with reflecting material. The diameter of the bowl is three times as long as a football field. Trees can be seen around the bowl, but they do not shade the bowl significantly.
Figure 10.28 A 305-m-diameter natural bowl at Arecibo in Puerto Rico is lined with reflective material, making it into a radio telescope. It is the largest curved focusing dish in the world. Although DD size 12{D} {} for Arecibo is much larger than for the Hubble Telescope, it detects much longer wavelength radiation and its diffraction limit is significantly poorer than Hubble’s. Arecibo is still very useful, because important information is carried by radio waves that is not carried by visible light. (Tatyana Temirbulatova, Flickr)

Diffraction is not only a problem for optical instruments but also for the electromagnetic radiation itself. Any beam of light having a finite diameter DD size 12{D} {} and a wavelength λλ size 12{λ} {} exhibits diffraction spreading. The beam spreads out with an angle θθ size 12{θ} {} given by the equation θ=1.22λD.θ=1.22λD. size 12{θ=1 "." "22" { {λ} over {D} } } {} Take, for example, a laser beam made of rays as parallel as possible—angles between rays as close to θ=θ= size 12{θ=0°} {} as possible—instead spreads out at an angle θ=1.22λ/D,θ=1.22λ/D, size 12{θ=1 "." "22"λ/D} {} where DD size 12{D} {} is the diameter of the beam and λλ size 12{λ} {} is its wavelength. This spreading is impossible to observe for a flashlight, because its beam is not very parallel to start with. However, for long-distance transmission of laser beams or microwave signals, diffraction spreading can be significant (see Figure 10.29). To avoid this, we can increase D.D. size 12{D} {} This is done for laser light sent to the moon to measure its distance from Earth. The laser beam is expanded through a telescope to make DD size 12{D} {} much larger and θθ size 12{θ} {} smaller.

The drawing shows a parabolic dish antenna mounted on a scaffolding tower and oriented to the right. The diameter of the dish is D. A horizontal line extends to the right from the top rim of the dish. Above the top line appears another line leaving the rim of the dish and angling up and to the right. The angle between this line and the horizontal line is labeled theta. Analogous lines appear at the bottom rim of the dish, except that the angled line extends down and to the right.
Figure 10.29 The beam produced by this microwave transmission antenna will spread out at a minimum angle θ=1.22λ/Dθ=1.22λ/D size 12{θ=1 "." "22"λ/D} {} due to diffraction. It is impossible to produce a near-parallel beam, because the beam has a limited diameter.

In most biology laboratories, resolution is presented when the use of the microscope is introduced. The ability of a lens to produce sharp images of two closely spaced point objects is called resolution. The smaller the distance xx size 12{x} {} by which two objects can be separated and still be seen as distinct, the greater the resolution. The resolving power of a lens is defined as that distance x.x. size 12{x} {} An expression for resolving power is obtained from the Rayleigh criterion. In Figure 10.30(a), we have two point objects separated by a distance x.x. size 12{x} {} According to the Rayleigh criterion, resolution is possible when the minimum angular separation is

10.31 θ=1.22λD=xd,θ=1.22λD=xd, size 12{θ=1 "." "22" { {λ} over {D} } = { {x} over {d} } } {}

where dd size 12{d} {} is the distance between the specimen and the objective lens, and we have used the small angle approximation that is, we have assumed that xx size 12{x} {} is much smaller than d,d, size 12{d} {} so that tanθsinθθ.tanθsinθθ. size 12{"tan"θ approx "sin"θ approx θ} {}

Therefore, the resolving power is

10.32 x=1.22λdD.x=1.22λdD. size 12{x=1 "." "22" { {λd} over {D} } } {}

Another way to look at this is by re-examining the concept of Numerical Aperture (NA)(NA) size 12{ ital "NA"} {} discussed in Microscopes. There, NANA size 12{ ital "NA"} {} is a measure of the maximum acceptance angle at which the fiber will take light and still contain it within the fiber. Figure 10.30(b) shows a lens and an object at point P. The NANA size 12{ ital "NA"} {} here is a measure of the ability of the lens to gather light and resolve fine detail. The angle subtended by the lens at its focus is defined to be θ=.θ=. size 12{θ=2α} {} From the figure and again using the small angle approximation, we can write

10.33 sinα=D/2d=D2d.sinα=D/2d=D2d. size 12{"sin"α= { { {D} slash {2} } over {d} } = { {D} over {2d} } } {}

The NANA for a lens is NA=nsinα,NA=nsinα, size 12{ ital "NA"=n`"sin"α} {} where nn size 12{n} {} is the index of refraction of the medium between the objective lens and the object at point P.

From this definition for NA,NA, size 12{ ital "NA"} {} we can see that

10.34 x=1.22λdD=1.22λ2sinα=0.61λnNA.x=1.22λdD=1.22λ2sinα=0.61λnNA. size 12{x=1 "." "22" { {λd} over {D} } =1 "." "22" { {λ} over {2"sin"α} } =0 "." "61" { {λn} over { ital "NA"} } } {}

In a microscope, NANA size 12{ ital "NA"} {} is important because it relates to the resolving power of a lens. A lens with a large NANA size 12{ ital "NA"} {} will be able to resolve finer details. Lenses with larger NANA size 12{ ital "NA"} {} will also be able to collect more light and so give a brighter image. Another way to describe this situation is that the larger the NA,NA, size 12{ ital "NA"} {} the larger the cone of light that can be brought into the lens, and so more of the diffraction modes will be collected. Thus the microscope has more information to form a clear image, and so its resolving power will be higher.

Part a of the figure shows two small objects arranged vertically a distance x one above the other on the left side of the schematic. On the right side, at a distance lowercase d from the two objects, is a vertical oval shape that represents a convex lens. The middle of the lens is on the horizontal bisector between the two points on the left. Two rays, one from each object on the left, leave the objects and pass through the center of the lens. The distance d is significantly longer than the distance x. Pa
Figure 10.30 (a) Two points separated by at distance xx size 12{x} {} and a positioned a distance dd size 12{d} {} away from the objective. (Infopro, Wikimedia Commons) (b) Terms and symbols used in discussion of resolving power for a lens and an object at point P. (Infopro, Wikimedia Commons)

One of the consequences of diffraction is that the focal point of a beam has a finite width and intensity distribution. Consider focusing when only considering geometric optics, shown in Figure 10.31(a). The focal point is infinitely small with a huge intensity and the capacity to incinerate most samples irrespective of the NANA size 12{ ital "NA"} {} of the objective lens. For wave optics, due to diffraction, the focal point spreads to become a focal spot (see Figure 10.31(b)) with the size of the spot decreasing with increasing NA.NA. size 12{ ital "NA"} {} Consequently, the intensity in the focal spot increases with increasing NA.NA. size 12{ ital "NA"} {} The higher the NA,NA, size 12{ ital "NA"} {} the greater the chances of photodegrading the specimen. However, the spot never becomes a true point.

The first schematic is labeled geometric optics focus. It shows an edge-on view of a thin lens that is vertical. The lens is represented by a thin ellipse. Two parallel horizontal rays impinge upon the lens from the left. One ray goes through the upper edge of the lens and is deviated downward at about a thirty degree angle below the horizontal. The other ray goes through the lower edge of the lens and is deviated upward at about a thirty degree angle above the horizontal. These two rays cross a point tha
Figure 10.31 (a) In geometric optics, the focus is a point, but it is not physically possible to produce such a point because it implies infinite intensity. (b) In wave optics, the focus is an extended region.